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Simulations at finite [t The phase diagram  The sign problem

Phase diagram

QGP

confined

Color superconductor
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To be checked by lattice QCD simulations
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Simulations at finite [t e am  The sign problem

The difficulty: “sign” problem

e \s-hermiticity:
Ys(ig +m s =(—ig+m  )=(ig +m )!
BUT Vs (igf +m-+Hyo)Ys = (=i +m—uyo) = (igf +m—p'yo)’
| detD () = det" (') |

det complex unless =0 (or i)
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BUT Vs (igf +m-+Hyo)Ys = (=i +m—uyo) = (igf +m—p'yo)’
| detD () = det" (') |

det complex unless =0 (or i)

e Corollary: measure @ must be complex
(Tr Polyakov ) = exp(—+F,) = (Re Polx Rem—Im Polx Imw)
(Tr Polyakov') = exp(—+Fg) = (Re Polx Rew-+Im Polx Imw)
Fq # Fg=Imw# 0
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Simulations at finite [t am  The sign problem

The difficulty: “sign” problem

e \s-hermiticity:
Ys(ig +m s =(—ig+m  )=(ig +m )!
BUT Vs (igf +m-+Hyo)Ys = (=i +m—uyo) = (igf +m—p'yo)’
| detD () = det" (') |

det complex unless =0 (or i)

e Corollary: measure @ must be complex
(Tr Polyakov ) = exp(—+F,) = (Re Polx Rem—Im Polx Imw)
(Tr Polyakov') = exp(—+Fg) = (Re Polx Rew-+Im Polx Imw)
Fq # Fg=Imw# 0

e Z(W) = [DUe S detN'DI (1) — no Monte Carlo
Zyc =...|det| or det(p=0) or..
All Monte Carlo ensembles have zero average baryon density: (p) =0
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Simulations at finite [t The phase diagram  The sign problem

Two problems: sign and overlap

MC ensemble has zero average baryon density p = exploit fluctuations in p

MC erdemble, mu=0 ——
(Target gnserble, mu=0 ——

Each MC config has complex weight
/ ) in target ensemble: sign problem.
/ — noisy results

Prob(rho)
~

Ph. de Forcrand SEWM, BNL, May 2006 Canonical LQCD



Simulations at finite [t The phase diagram  The sign problem

Two problems: sign and overlap

MC ensemble has zero average baryon density p = exploit fluctuations in p

/R Each MC config has complex weight
g / ) in target ensemble: sign problem.
. / — noisy results
,,/,
TEmmmws—] Larger volume.
- / \ Overlap problem becomes clear,
5 I starting with large-p tail
/,« ‘\\ — wrong results (Glasgow method)
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Simulations at finite [t The phase diagram  The sign problem

Two problems: sign and overlap

MC ensemble has zero average baryon density p = exploit fluctuations in p

MC erdemble, mu=0 ——

/e Each MC config has complex weight

g / ) in target ensemble: sign problem.
. / — noisy results
,,/,
TEmmmws—] Larger volume.
- / \ Overlap problem becomes clear,
5 I starting with large-p tail
/,« ‘\\ — wrong results (Glasgow method)

Canonical : no large-p tail =
/ \ reduced overlap pb. — more reliable
Same thermodynamic limit

Prob(rho)
_—

Ph. de Forcrand SEWM, BNL, May 2006 Canonical LQCD



Is the future canonical? Simulation method  Canonical vs grand canonical Results Max

Additional features

@ Baryon number B fixed during Heavy-lon collision

@ Canonical simulations have different systematic errors
Hasenfratz & Toussaint; Alford et al.; PdF & Kratochvila; Alexandru et al.

@ Phase diagram: (T,W) — (T,p)

confined confined

H P
Grand canonical Canonical

@ Fix B (small), increase V, lower T — nuclear interactions
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Is the future canonical? Simulation method ~ Canonical 'd canonica

Canonical formalism on the lattice

@ Fix baryon number B
= 8(3B— [ d°X ByoW) = 5 S Ak exp(—iH (3B — [ d*x byoW))

= +ndUl exp(—ip (3B —T fo dt fd3x Qyoy)
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Is the future canonical? Simulation metho

Canonical formalism on the lattice

@ Fix baryon number B
= 8(3B— [ d°X ByoW) = 5 S Ak exp(—iH (3B — [ d*x byoW))

= +ndUl exp(—ip (3B —T fo dt fd3x Qyoy)

Zo(B) = £ JTd () e 3B Zee (=)

@ |y-dependency is in detM (U, i) only! — variance reduction

@ Strategy: sample Zgc (ipy) at some fixed by = |,
Fourier transform each determinant exactly — work ~ L2 x L
det(U,ipy) = 33V cq(U) exp(igk) Hasenfratz & Toussaint

zc(8=1)
ZZc(iMZ) - <det(ul,ip.o)cq(u)>
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Is the future canonical? Simulation method ~ Canonical 'd canonica

Canonical formalism on the lattice

@ Fix baryon number B
= 8(3B— [ d°X ByoW) = 5 S Ak exp(—iH (3B — [ d*x byoW))

= +ndUl exp(—ip (3B —T fo dt fd3x Qyoy)

Zo(B) = £ JTd () e 3B Zee (=)

@ |y-dependency is in detM (U, i) only! — variance reduction

@ Strategy: sample Zgc (ipy) at some fixed by = |,
Fourier transform each determinant exactly — work ~ L2 x L
det(U,ipy) = 33V cq(U) exp(igk) Hasenfratz & Toussaint

zc(8=1)
ZZc(iMZ) - <det(ul,ip.o)cq(u)>

@ Combine many ensembles with Ferrenberg-Swendsen
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Is the future canonical? Simulation method ~ Canonical vs grand canonical R

From canonical to grand canonical

Version 1: Fugacity Expansion: 1 — B

3u
=

_ Zé}v B Zc(B)e®
SY_ v Zc(B)eBT

(B(W)
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Is the future canonical? Simulatior

From canonical to grand canonical

Version 1: Fugacity Expansion: 1 — B

_ Je-_vBZc(B)ePT
Z\B/:—v Zc(B)ePT

(B(W)

w
=

Version 2: Saddle Point Approximation: B — 1 (p = %)
Zac(W) = [ dpe T (1(P)-3)
—Hp) =3t'(P) = 3((P)—f(p—1/V))

V<o
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Is the future canonical? Simulation method ~ Canonical vs grand canonical

From canonical to grand canonical

Version 1: Fugacity Expansion: 1 — B

_ Je-_vBZc(B)ePT
Z\B/:—v Zc(B)ePT

(B(W)

Version 2: Saddle Point Approximation: B — 1 (p = %)
Zac(W) = [ dpe T (1(P)-3)
—Hp) =3t'(P) = 3((P)—f(p—1/V))

V<o

Setup: 6°x4, a ~ 0.3 fm, Ny = 4 staggered fermions, my ~ 350 MeV
= lrst-order transition expected for all 1
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Is the future canonical? Simulation method  Canonical vs grand canonical

T/, =0.92

Saddle point apﬁroximation
Fugacity expansion

p/T3

1
O P N W b U1 O N

1 1

0.5 1 15 2
WT = (F(B)-F(B-1))/3T
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WB) _ F(B)-F(B—1)

T 3T

Flip coordinates: [ versus p

p/T3
0 1 2 3 4 5 6 7 8
|
15 1
S 1 ]
conlned\ 05 r )
P

Weakly interacting massless gas

0 L L L L L
0 5 10 15 20 25 30

Baryon number

n :
B~ 20,c5B (B) +4bsc$® (£)” — b, = 0.92(1),by = 2.18(1)

Little departure from free gas
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Low density phase consistent with Hadron Resonance Gas

wT
N
Y

7 T/IT,=0.89 ——

- 2/
conlned\ 05 ’ 7

| Weakly interacting massless gas
0 I ‘ ‘ Hadron‘ Resonance Gas ‘
0 5 10 15 20 25 30

Baryon number

)
=

) — 3F(T)sinh & — F(T) = 0.048(3)
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Low density phase consistent with Hadron Resonance Gas

p/T3
0 1 2 3 4 5 6 7 8
2 . . . . . . . . |
15 ¢ e ]
4 Jif Tz 2
= 1t /{{I g, ]
- = Fi, TIT =089 ——
¥x T=ap T/T =0.92 ——
A T/T =0.95 —»—
Jconfined 0.5 "‘“@ o B T/T =098 —s— A
| Weakly interacting massless gas ———
0 I ‘ ‘ Hadron‘ Resonance Gas o

0 5 10 15 20 25 30
Baryon number
Good accuracy up to ?“ ~ 2, 30 baryons

Fluctuations in transition region physical
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Maxwell Co uction

WeaKkly interacting massless gas ‘

0 2 4 6 8 10 12 14 16
Baryon number
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Is the future canonical? Simulation method Canonical vs grand canonical Results

Maxwell Construction

p/T3

0 1 2 3 4 5
14 | P1 P2 ]
12+ 1

-

— ~
3 1 1
0.8 r ]

TIT,=0.92 ——
0.6 WT=1.06(2) —— |
‘ Weakly interacting massless gas

0 2 4 6 8 10 12 14 16
Baryon number

2 J52dp(f'(p) — ) =0 — f(p1) — Hp1 = f(P2) — K2
ie. phase transition
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Phase Diagram T —p

QGP

0.95

0.9

TIT,

co-existence

0.85 ; ]
|
|
08 L L L L 1
0 0.5 1 15 2

p= B/fm®
Compare p; with nuclear density 0.17 /fm?3
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Is the future canonical? Simulation method  Canonical

Interface tension

2
15} E
& \
@
ot ]
—
+ .
oQ 2 planar interfaces
g
05 E
Pure phase Pure phase
0

rho/T3

Shaded area = free energy of two L? /T interfaces — \/g ~ 35— 45 MeV
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Is the future canonical?

ap
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i) reweighting becomes unreliable
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4.8 L L 8 0.70
0 0.5 1 1.5 2

wT
i) systematic error of analytic continuation not studied at f“ >1
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iii) Bc(a 1) must bend down to match expectations at 3 = 0
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Conclusions Numerical Approaches Asking a simpler question

Conclusions

Lattice QCD at finite L not for the timid

e Time has come to assess systematic errors: compare methods
e Phase boundary under control for /T < 1:

continuum, chiral extrapolations ?

Canonical formalism:
- different systematics
- overlap problem less severe — more reliable
- prospect: study ab initio nuclear interactions
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Conclusions Numerical Approaches Asking a sim

Numerical approaches

—

I. Reweighting in (W, B) from (=0, ) Simf Hmﬂ ]
(_psy)d M(F())dOI’ & Katz 2 160 E HHE endpoint ]

exp(— et = F ]

Z (u’ B) - <6Xp(p780593 detM(uu:O) >ZMC (u: 07 BC) E hadronic phase @\ E
150 |~ h

T T BT T T
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ug (MeV)
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Conclusions Numerical Approaches Asking a simpler question

Numerical approaches

LN L L L B

quark—gluon plasma:

i ?

ﬂﬂmw\m

v b b b b ey
0 200 400 600 800 1000

1y (MeV)
Statistical errors under control ? Overlap problem

I. Reweighting in (i, B) from (L= 0,B) =
Fodor & Katz =

Z (1 B) = (ol ettt ) Zuc (1=0,Bc)

[T T T T[T T T T[T T

150
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Conclusions

Numerical approaches

Numerical Approaches

Asking a simpler question

I. Reweighting in (W, B) from (L=0,[)

Z(uvB):<

Ph. de Forcrand

Fodor & Katz

exp(—PSq) detM (1)

exp(—BcSg) detM

(u=0) >ZMC (p': 0, BC)

LN L L L B

quark—gluon plasma:

ibﬂﬂ . 1
170 [ : H ]
= m ]
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E hadronic phase E
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Conclusions Numerical Approaches Asking a simpler question

Numerical approaches
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Conclusions Numerical Approaches

Aside: phase diagram for imaginary U

@ Symmetries:
o Z(+H) =Z(—p) even
e Z(u+iZlk) =Z (W) periodic
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Conclusions Numerical Approaches Asking a simpler question

Aside: phase diagram for imaginary U

@ Symmetries:
o Z(+H) =Z(—p) even

e Z(u+iZk) =2z (W) periodic
@ Phase diagram:

Zg [ransitions
\ _—
=
-
ordered, k=2 ordered, k=0 ordered, k=1
T / \\
disordered
-2m'3 -3 0 w3 213
W
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Conclusions Numerical Approaches Asking a simpler question

Aside: phase diagram for imaginary U

@ Symmetries:
o Z(+H) =Z(—p) even

e Z(u+iZk) =2z (W) periodic
@ Phase diagram:

Zg [ransitions
> T /o
-
ordered, k=2 ordered, k=0 ordered, k=1
T / \\
disordered
-2m'3 -TT‘/S 0 w3 213
. T . W/ T
== Zgtransition at |y = 3T, ie. amu = 3~
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Conclusions Numerical Approaches Asking a simpler question

Il. Susceptibilities at U= 0

MILC, .., TARO, Bielefeld-Swansea I, Gavai & Gupta
A few derivatives (max. 4); convergence?

Choose mg, look for non-analyticity at critical point ?
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Il. Susceptibilities at U= 0

MILC, .., TARO, Bielefeld-Swansea I, Gavai & Gupta
A few derivatives (max. 4); convergence?

Choose mg, look for non-analyticity at critical point ?

lIl. Imaginary L+ analytic continuation

PdF & OP, D’Elia & Lombardo, Giudice & Papa, Chen & Luo, Azcaoiti et al.
Independent simulations at various L= il # 0

Fit with truncated Taylor series, then change Y2 — —

Use for pseudo-critical line

Systematic errors ?

Ph. de Forcrand SEWM, BNL, May 2006 Canonical LQCD



Conclusions Numerical Approaches Asking a simpler question

Il. Susceptibilities at U= 0

MILC, .., TARO, Bielefeld-Swansea I, Gavai & Gupta
A few derivatives (max. 4); convergence?

Choose mg, look for non-analyticity at critical point ?

lIl. Imaginary L+ analytic continuation

PdF & OP, D’Elia & Lombardo, Giudice & Papa, Chen & Luo, Azcaoiti et al.
Independent simulations at various L= il # 0

Fit with truncated Taylor series, then change Y2 — —

Use for pseudo-critical line

Systematic errors ?

— Yet another approach: canonical
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Phase diagram vs (my g,ms), T and [

Real world ——

1rst

crossover mg

X

1rst order

mu,d
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Conclusions Nume s Asking a simpler question

Phase diagram vs (my g, ms),

H#0

Ph. de Forcrand

Real world ——

crossover TS o
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Phase diagram vs (my g,ms), T and [

Ph. de Forcrand

Real world ——

crossover T8> o

SEWM, BNL, May 2006 Canonical LQCD



Conclusions Numerical Approaches  Asking a simpler question

Phase diagram vs (my g,ms), T and [

Ph. de Forcrand

Real world ——

H N=3 ——

QCD critical point DISAPPEARED

SEWM, BNL, May 2006 Canonical LQCD



Conclusions Numerical Ap c Asking a simpler question

Strong coupling limit?

8
Monte Carlo, Karsch and Mutter ' '
1-state : m0=2.785, c0=0.20
7 2-states: m0=2.785, c0=0.17 R
stron%coupling, Nishida et al. m1=3.113, ¢1=0.17
6 - 4

" o.

T1F@B)B
N
1

3 L 1
2 |- 4
—
1 strong coupling,
Kawamoto et al. B=1
o <~ ) ) ) B>2 plgteau - @
0 1 2 3 4 5
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